Debezium connector for PostgreSQL
- Overview
- How the connector works
- Data change events
- Data type mappings
- Setting up Postgres
- PostgreSQL in the Cloud
- Installing the logical decoding output plug-in
- Plug-in differences
- Configuring the PostgreSQL server
- Setting up permissions
- Setting privileges to enable Debezium to create PostgreSQL publications when you use
pgoutput
- Configuring PostgreSQL to allow replication with the Debezium connector host
- Supported PostgreSQL topologies
- WAL disk space consumption
- Deployment
- Monitoring
- Behavior when things go wrong
The Debezium PostgreSQL connector captures row-level changes in the schemas of a PostgreSQL database. For information about the PostgreSQL versions that are compatible with the connector, see the Debezium release overview.
The first time it connects to a PostgreSQL server or cluster, the connector takes a consistent snapshot of all schemas. After that snapshot is complete, the connector continuously captures row-level changes that insert, update, and delete database content and that were committed to a PostgreSQL database. The connector generates data change event records and streams them to Kafka topics. For each table, the default behavior is that the connector streams all generated events to a separate Kafka topic for that table. Applications and services consume data change event records from that topic.
Overview
PostgreSQL’s logical decoding feature was introduced in version 9.4. It is a mechanism that allows the extraction of the changes that were committed to the transaction log and the processing of these changes in a user-friendly manner with the help of an output plug-in. The output plug-in enables clients to consume the changes.
The PostgreSQL connector contains two main parts that work together to read and process database changes:
-
A logical decoding output plug-in. You might need to install the output plug-in that you choose to use. You must configure a replication slot that uses your chosen output plug-in before running the PostgreSQL server. The plug-in can be one of the following:
-
decoderbufs
is based on Protobuf and maintained by the Debezium community. -
pgoutput
is the standard logical decoding output plug-in in PostgreSQL 10+. It is maintained by the PostgreSQL community, and used by PostgreSQL itself for logical replication. This plug-in is always present so no additional libraries need to be installed. The Debezium connector interprets the raw replication event stream directly into change events.
-
-
Java code (the actual Kafka Connect connector) that reads the changes produced by the chosen logical decoding output plug-in. It uses PostgreSQL’s streaming replication protocol, by means of the PostgreSQL JDBC driver
The connector produces a change event for every row-level insert, update, and delete operation that was captured and sends change event records for each table in a separate Kafka topic. Client applications read the Kafka topics that correspond to the database tables of interest, and can react to every row-level event they receive from those topics.
PostgreSQL normally purges write-ahead log (WAL) segments after some period of time. This means that the connector does not have the complete history of all changes that have been made to the database. Therefore, when the PostgreSQL connector first connects to a particular PostgreSQL database, it starts by performing a consistent snapshot of each of the database schemas. After the connector completes the snapshot, it continues streaming changes from the exact point at which the snapshot was made. This way, the connector starts with a consistent view of all of the data, and does not omit any changes that were made while the snapshot was being taken.
The connector is tolerant of failures. As the connector reads changes and produces events, it records the WAL position for each event. If the connector stops for any reason (including communication failures, network problems, or crashes), upon restart the connector continues reading the WAL where it last left off. This includes snapshots. If the connector stops during a snapshot, the connector begins a new snapshot when it restarts.
The connector relies on and reflects the PostgreSQL logical decoding feature, which has the following limitations:
Behavior when things go wrong describes how the connector responds if there is a problem. |
Debezium currently supports databases with UTF-8 character encoding only. With a single byte character encoding, it is not possible to correctly process strings that contain extended ASCII code characters. |
How the connector works
To optimally configure and run a Debezium PostgreSQL connector, it is helpful to understand how the connector performs snapshots, streams change events, determines Kafka topic names, and uses metadata.
Security
To use the Debezium connector to stream changes from a PostgreSQL database, the connector must operate with specific privileges in the database.
Although one way to grant the necessary privileges is to provide the user with superuser
privileges, doing so potentially exposes your PostgreSQL data to unauthorized access.
Rather than granting excessive privileges to the Debezium user, it is best to create a dedicated Debezium replication user to which you grant specific privileges.
For more information about configuring privileges for the Debezium PostgreSQL user, see Setting up permissions. For more information about PostgreSQL logical replication security, see the PostgreSQL documentation.
Snapshots
Most PostgreSQL servers are configured to not retain the complete history of the database in the WAL segments.
This means that the PostgreSQL connector would be unable to see the entire history of the database by reading only the WAL.
Consequently, the first time that the connector starts, it performs an initial consistent snapshot of the database.
The default behavior for performing a snapshot consists of the following steps.
You can change this behavior by setting the snapshot.mode
connector configuration property to a value other than initial
.
-
Start a transaction with a SERIALIZABLE, READ ONLY, DEFERRABLE isolation level to ensure that subsequent reads in this transaction are against a single consistent version of the data. Any changes to the data due to subsequent
INSERT
,UPDATE
, andDELETE
operations by other clients are not visible to this transaction. -
Read the current position in the server’s transaction log.
-
Scan the database tables and schemas, generate a
READ
event for each row and write that event to the appropriate table-specific Kafka topic. -
Commit the transaction.
-
Record the successful completion of the snapshot in the connector offsets.
If the connector fails, is rebalanced, or stops after Step 1 begins but before Step 5 completes, upon restart the connector begins a new snapshot. After the connector completes its initial snapshot, the PostgreSQL connector continues streaming from the position that it read in Step 2. This ensures that the connector does not miss any updates. If the connector stops again for any reason, upon restart, the connector continues streaming changes from where it previously left off.
Option | Description |
---|---|
|
The connector always performs a snapshot when it starts. After the snapshot completes, the connector continues streaming changes from step 3 in the above sequence. This mode is useful in these situations:
|
|
The connector never performs snapshots. When a connector is configured this way, its behavior when it starts is as follows. If there is a previously stored LSN in the Kafka offsets topic, the connector continues streaming changes from that position. If no LSN has been stored, the connector starts streaming changes from the point in time when the PostgreSQL logical replication slot was created on the server. The |
|
The connector performs a database snapshot and stops before streaming any change event records. If the connector had started but did not complete a snapshot before stopping, the connector restarts the snapshot process and stops when the snapshot completes. |
|
Deprecated, all modes are lockless. |
|
The |
Ad hoc snapshots
By default, a connector runs an initial snapshot operation only after it starts for the first time. Following this initial snapshot, under normal circumstances, the connector does not repeat the snapshot process. Any future change event data that the connector captures comes in through the streaming process only.
However, in some situations the data that the connector obtained during the initial snapshot might become stale, lost, or incomplete. To provide a mechanism for recapturing table data, Debezium includes an option to perform ad hoc snapshots. The following changes in a database might be cause for performing an ad hoc snapshot:
-
The connector configuration is modified to capture a different set of tables.
-
Kafka topics are deleted and must be rebuilt.
-
Data corruption occurs due to a configuration error or some other problem.
You can re-run a snapshot for a table for which you previously captured a snapshot by initiating a so-called ad-hoc snapshot. Ad hoc snapshots require the use of signaling tables. You initiate an ad hoc snapshot by sending a signal request to the Debezium signaling table.
When you initiate an ad hoc snapshot of an existing table, the connector appends content to the topic that already exists for the table. If a previously existing topic was removed, Debezium can create a topic automatically if automatic topic creation is enabled.
Ad hoc snapshot signals specify the tables to include in the snapshot. The snapshot can capture the entire contents of the database, or capture only a subset of the tables in the database. Also, the snapshot can capture a subset of the contents of the table(s) in the database.
You specify the tables to capture by sending an execute-snapshot
message to the signaling table.
Set the type of the execute-snapshot
signal to incremental
, and provide the names of the tables to include in the snapshot, as described in the following table:
Field | Default | Value |
---|---|---|
|
|
Specifies the type of snapshot that you want to run. |
|
N/A |
An array that contains regular expressions matching the fully-qualified names of the table to be snapshotted. |
|
N/A |
An optional string, which specifies a condition based on the column(s) of the table(s), to capture a subset of the contents of the table(s). |
You initiate an ad hoc snapshot by adding an entry with the execute-snapshot
signal type to the signaling table.
After the connector processes the message, it begins the snapshot operation.
The snapshot process reads the first and last primary key values and uses those values as the start and end point for each table.
Based on the number of entries in the table, and the configured chunk size, Debezium divides the table into chunks, and proceeds to snapshot each chunk, in succession, one at a time.
Currently, the execute-snapshot
action type triggers incremental snapshots only.
For more information, see Incremental snapshots.
Incremental snapshots
To provide flexibility in managing snapshots, Debezium includes a supplementary snapshot mechanism, known as incremental snapshotting. Incremental snapshots rely on the Debezium mechanism for sending signals to a Debezium connector. Incremental snapshots are based on the DDD-3 design document.
In an incremental snapshot, instead of capturing the full state of a database all at once, as in an initial snapshot, Debezium captures each table in phases, in a series of configurable chunks. You can specify the tables that you want the snapshot to capture and the size of each chunk. The chunk size determines the number of rows that the snapshot collects during each fetch operation on the database. The default chunk size for incremental snapshots is 1 KB.
As an incremental snapshot proceeds, Debezium uses watermarks to track its progress, maintaining a record of each table row that it captures. This phased approach to capturing data provides the following advantages over the standard initial snapshot process:
-
You can run incremental snapshots in parallel with streamed data capture, instead of postponing streaming until the snapshot completes. The connector continues to capture near real-time events from the change log throughout the snapshot process, and neither operation blocks the other.
-
If the progress of an incremental snapshot is interrupted, you can resume it without losing any data. After the process resumes, the snapshot begins at the point where it stopped, rather than recapturing the table from the beginning.
-
You can run an incremental snapshot on demand at any time, and repeat the process as needed to adapt to database updates. For example, you might re-run a snapshot after you modify the connector configuration to add a table to its
table.include.list
property.
When you run an incremental snapshot, Debezium sorts each table by primary key and then splits the table into chunks based on the configured chunk size.
Working chunk by chunk, it then captures each table row in a chunk.
For each row that it captures, the snapshot emits a READ
event.
That event represents the value of the row when the snapshot for the chunk began.
As a snapshot proceeds, it’s likely that other processes continue to access the database, potentially modifying table records.
To reflect such changes, INSERT
, UPDATE
, or DELETE
operations are committed to the transaction log as per usual.
Similarly, the ongoing Debezium streaming process continues to detect these change events and emits corresponding change event records to Kafka.
In some cases, the UPDATE
or DELETE
events that the streaming process emits are received out of sequence.
That is, the streaming process might emit an event that modifies a table row before the snapshot captures the chunk that contains the READ
event for that row.
When the snapshot eventually emits the corresponding READ
event for the row, its value is already superseded.
To ensure that incremental snapshot events that arrive out of sequence are processed in the correct logical order, Debezium employs a buffering scheme for resolving collisions.
Only after collisions between the snapshot events and the streamed events are resolved does Debezium emit an event record to Kafka.
To assist in resolving collisions between late-arriving READ
events and streamed events that modify the same table row, Debezium employs a so-called snapshot window.
The snapshot windows demarcates the interval during which an incremental snapshot captures data for a specified table chunk.
Before the snapshot window for a chunk opens, Debezium follows its usual behavior and emits events from the transaction log directly downstream to the target Kafka topic.
But from the moment that the snapshot for a particular chunk opens, until it closes, Debezium performs a de-duplication step to resolve collisions between events that have the same primary key..
For each data collection, the Debezium emits two types of events, and stores the records for them both in a single destination Kafka topic.
The snapshot records that it captures directly from a table are emitted as READ
operations.
Meanwhile, as users continue to update records in the data collection, and the transaction log is updated to reflect each commit, Debezium emits UPDATE
or DELETE
operations for each change.
As the snapshot window opens, and Debezium begins processing a snapshot chunk, it delivers snapshot records to a memory buffer.
During the snapshot windows, the primary keys of the READ
events in the buffer are compared to the primary keys of the incoming streamed events.
If no match is found, the streamed event record is sent directly to Kafka.
If Debezium detects a match, it discards the buffered READ
event, and writes the streamed record to the destination topic, because the streamed event logically supersede the static snapshot event.
After the snapshot window for the chunk closes, the buffer contains only READ
events for which no related transaction log events exist.
Debezium emits these remaining READ
events to the table’s Kafka topic.
The connector repeats the process for each snapshot chunk.
The Debezium connector for PostgreSQL does not support schema changes while an incremental snapshot is running.
If a schema change is performed before the incremental snapshot start but after sending the signal then passthrough config option |
Triggering an incremental snapshot
Currently, the only way to initiate an incremental snapshot is to send an ad hoc snapshot signal to the signaling table on the source database.
You submit a signal to the signaling table as SQL INSERT
queries.
After Debezium detects the change in the signaling table, it reads the signal, and runs the requested snapshot operation.
The query that you submit specifies the tables to include in the snapshot, and, optionally, specifies the kind of snapshot operation.
Currently, the only valid option for snapshots operations is the default value, incremental
.
To specify the tables to include in the snapshot, provide a data-collections
array that lists the tables or an array of regular expressions used to match tables, for example,
{"data-collections": ["public.MyFirstTable", "public.MySecondTable"]}
The data-collections
array for an incremental snapshot signal has no default value.
If the data-collections
array is empty, Debezium detects that no action is required and does not perform a snapshot.
If the name of a table that you want to include in a snapshot contains a dot ( |
-
-
A signaling data collection exists on the source database.
-
The signaling data collection is specified in the
signal.data.collection
property.
-
-
Send a SQL query to add the ad hoc incremental snapshot request to the signaling table:
INSERT INTO <signalTable> (id, type, data) VALUES ('<id>', '<snapshotType>', '{"data-collections": ["<tableName>","<tableName>"],"type":"<snapshotType>","additional-condition":"<additional-condition>"}');
For example,
INSERT INTO myschema.debezium_signal (id, type, data) (1) values ('ad-hoc-1', (2) 'execute-snapshot', (3) '{"data-collections": ["schema1.table1", "schema2.table2"], (4) "type":"incremental"}, (5) "additional-condition":"color=blue"}'); (6)
The values of the
id
,type
, anddata
parameters in the command correspond to the fields of the signaling table.The following table describes the parameters in the example:
Table 3. Descriptions of fields in a SQL command for sending an incremental snapshot signal to the signaling table Item Value Description 1
myschema.debezium_signal
Specifies the fully-qualified name of the signaling table on the source database.
2
ad-hoc-1
The
id
parameter specifies an arbitrary string that is assigned as theid
identifier for the signal request.
Use this string to identify logging messages to entries in the signaling table. Debezium does not use this string. Rather, during the snapshot, Debezium generates its ownid
string as a watermarking signal.3
execute-snapshot
The
type
parameter specifies the operation that the signal is intended to trigger.4
data-collections
A required component of the
data
field of a signal that specifies an array of table names or regular expressions to match table names to include in the snapshot.
The array lists regular expressions which match tables by their fully-qualified names, using the same format as you use to specify the name of the connector’s signaling table in thesignal.data.collection
configuration property.5
incremental
An optional
type
component of thedata
field of a signal that specifies the kind of snapshot operation to run.
Currently, the only valid option is the default value,incremental
.
If you do not specify a value, the connector runs an incremental snapshot.6
additional-condition
An optional string, which specifies a condition based on the column(s) of the table(s), to capture a subset of the contents of the tables. For more information about the
additional-condition
parameter, see Ad hoc incremental snapshots withadditional-condition
.
additional-condition
If you want a snapshot to include only a subset of the content in a table, you can modify the signal request by appending an additional-condition
parameter to the snapshot signal.
The SQL query for a typical snapshot takes the following form:
SELECT * FROM <tableName> ....
By adding an additional-condition
parameter, you append a WHERE
condition to the SQL query, as in the following example:
SELECT * FROM <tableName> WHERE <additional-condition> ....
The following example shows a SQL query to send an ad hoc incremental snapshot request with an additional condition to the signaling table:
INSERT INTO <signalTable> (id, type, data) VALUES ('<id>', '<snapshotType>', '{"data-collections": ["<tableName>","<tableName>"],"type":"<snapshotType>","additional-condition":"<additional-condition>"}');
For example, suppose you have a products
table that contains the following columns:
-
id
(primary key) -
color
-
quantity
If you want an incremental snapshot of the products
table to include only the data items where color=blue
, you can use the following SQL statement to trigger the snapshot:
INSERT INTO myschema.debezium_signal (id, type, data) VALUES('ad-hoc-1', 'execute-snapshot', '{"data-collections": ["schema1.products"],"type":"incremental", "additional-condition":"color=blue"}');
The additional-condition
parameter also enables you to pass conditions that are based on more than one column.
For example, using the products
table from the previous example, you can submit a query that triggers an incremental snapshot that includes the data of only those items for which color=blue
and quantity>10
:
INSERT INTO myschema.debezium_signal (id, type, data) VALUES('ad-hoc-1', 'execute-snapshot', '{"data-collections": ["schema1.products"],"type":"incremental", "additional-condition":"color=blue AND quantity>10"}');
The following example, shows the JSON for an incremental snapshot event that is captured by a connector.
{
"before":null,
"after": {
"pk":"1",
"value":"New data"
},
"source": {
...
"snapshot":"incremental" (1)
},
"op":"r", (2)
"ts_ms":"1620393591654",
"transaction":null
}
Item | Field name | Description |
---|---|---|
1 |
|
Specifies the type of snapshot operation to run. |
2 |
|
Specifies the event type. |
Stopping an incremental snapshot
You can also stop an incremental snapshot by sending a signal to the table on the source database.
You submit a stop snapshot signal to the table by sending a SQL INSERT
query.
After Debezium detects the change in the signaling table, it reads the signal, and stops the incremental snapshot operation if it’s in progress.
The query that you submit specifies the snapshot operation of incremental
, and, optionally, the tables of the current running snapshot to be removed.
-
-
A signaling data collection exists on the source database.
-
The signaling data collection is specified in the
signal.data.collection
property.
-
-
Send a SQL query to stop the ad hoc incremental snapshot to the signaling table:
INSERT INTO <signalTable> (id, type, data) values ('<id>', 'stop-snapshot', '{"data-collections": ["<tableName>","<tableName>"],"type":"incremental"}');
For example,
INSERT INTO myschema.debezium_signal (id, type, data) (1) values ('ad-hoc-1', (2) 'stop-snapshot', (3) '{"data-collections": ["schema1.table1", "schema2.table2"], (4) "type":"incremental"}'); (5)
The values of the
id
,type
, anddata
parameters in the signal command correspond to the fields of the signaling table.The following table describes the parameters in the example:
Table 4. Descriptions of fields in a SQL command for sending a stop incremental snapshot signal to the signaling table Item Value Description 1
myschema.debezium_signal
Specifies the fully-qualified name of the signaling table on the source database.
2
ad-hoc-1
The
id
parameter specifies an arbitrary string that is assigned as theid
identifier for the signal request.
Use this string to identify logging messages to entries in the signaling table. Debezium does not use this string.3
stop-snapshot
Specifies
type
parameter specifies the operation that the signal is intended to trigger.4
data-collections
An optional component of the
data
field of a signal that specifies an array of table names or regular expressions to match table names to remove from the snapshot.
The array lists regular expressions which match tables by their fully-qualified names, using the same format as you use to specify the name of the connector’s signaling table in thesignal.data.collection
configuration property. If this component of thedata
field is omitted, the signal stops the entire incremental snapshot that is in progress.5
incremental
A required component of the
data
field of a signal that specifies the kind of snapshot operation that is to be stopped.
Currently, the only valid option isincremental
.
If you do not specify atype
value, the signal fails to stop the incremental snapshot.
Custom snapshotter SPI
For more advanced uses, you can provide an implementation of the io.debezium.connector.postgresql.spi.Snapshotter
interface. This interface allows control of most of the aspects of how the connector performs snapshots. This includes whether or not to take a snapshot, the options for opening the snapshot transaction, and whether to take locks.
Following is the full API for the interface. All built-in snapshot modes implement this interface.
/**
* This interface is used to determine details about the snapshot process:
*
* Namely:
* - Should a snapshot occur at all
* - Should streaming occur
* - What queries should be used to snapshot
*
* While many default snapshot modes are provided with Debezium,
* a custom implementation of this interface can be provided by the implementor, which
* can provide more advanced functionality, such as partial snapshots.
*
* Implementations must return true for either {@link #shouldSnapshot()} or {@link #shouldStream()}
* or true for both.
*/
@Incubating
public interface Snapshotter {
void init(PostgresConnectorConfig config, OffsetState sourceInfo,
SlotState slotState);
/**
* @return true if the snapshotter should take a snapshot
*/
boolean shouldSnapshot();
/**
* @return true if the snapshotter should stream after taking a snapshot
*/
boolean shouldStream();
/**
*
* @return true if streaming should resume from the start of the snapshot
* transaction, or false for when a connector resumes and takes a snapshot,
* streaming should resume from where streaming previously left off.
*/
default boolean shouldStreamEventsStartingFromSnapshot() {
return true;
}
/**
* Generate a valid postgres query string for the specified table, or an empty {@link Optional}
* to skip snapshotting this table (but that table will still be streamed from)
*
* @param tableId the table to generate a query for
* @param snapshotSelectColumns the columns to be used in the snapshot select based on the column
* include/exclude filters
* @return a valid query string, or none to skip snapshotting this table
*/
Optional<String> buildSnapshotQuery(TableId tableId, List<String> snapshotSelectColumns);
/**
* Return a new string that set up the transaction for snapshotting
*
* @param newSlotInfo if a new slow was created for snapshotting, this contains information from
* the `create_replication_slot` command
*/
default String snapshotTransactionIsolationLevelStatement(SlotCreationResult newSlotInfo) {
// we're using the same isolation level that pg_backup uses
return "SET TRANSACTION ISOLATION LEVEL SERIALIZABLE, READ ONLY, DEFERRABLE;";
}
/**
* Returns a SQL statement for locking the given tables during snapshotting, if required by the specific snapshotter
* implementation.
*/
default Optional<String> snapshotTableLockingStatement(Duration lockTimeout, Set<TableId> tableIds) {
String lineSeparator = System.lineSeparator();
StringBuilder statements = new StringBuilder();
statements.append("SET lock_timeout = ").append(lockTimeout.toMillis()).append(";").append(lineSeparator);
// we're locking in ACCESS SHARE MODE to avoid concurrent schema changes while we're taking the snapshot
// this does not prevent writes to the table, but prevents changes to the table's schema....
// DBZ-298 Quoting name in case it has been quoted originally; it doesn't do harm if it hasn't been quoted
tableIds.forEach(tableId -> statements.append("LOCK TABLE ")
.append(tableId.toDoubleQuotedString())
.append(" IN ACCESS SHARE MODE;")
.append(lineSeparator));
return Optional.of(statements.toString());
}
/**
* Lifecycle hook called once the snapshot phase is finished.
*/
default void snapshotCompleted() {
// no operation
}
}
Streaming changes
The PostgreSQL connector typically spends the vast majority of its time streaming changes from the PostgreSQL server to which it is connected. This mechanism relies on PostgreSQL’s replication protocol. This protocol enables clients to receive changes from the server as they are committed in the server’s transaction log at certain positions, which are referred to as Log Sequence Numbers (LSNs).
Whenever the server commits a transaction, a separate server process invokes a callback function from the logical decoding plug-in. This function processes the changes from the transaction, converts them to a specific format (Protobuf or JSON in the case of Debezium plug-in) and writes them on an output stream, which can then be consumed by clients.
The Debezium PostgreSQL connector acts as a PostgreSQL client. When the connector receives changes it transforms the events into Debezium create, update, or delete events that include the LSN of the event. The PostgreSQL connector forwards these change events in records to the Kafka Connect framework, which is running in the same process. The Kafka Connect process asynchronously writes the change event records in the same order in which they were generated to the appropriate Kafka topic.
Periodically, Kafka Connect records the most recent offset in another Kafka topic. The offset indicates source-specific position information that Debezium includes with each event. For the PostgreSQL connector, the LSN recorded in each change event is the offset.
When Kafka Connect gracefully shuts down, it stops the connectors, flushes all event records to Kafka, and records the last offset received from each connector. When Kafka Connect restarts, it reads the last recorded offset for each connector, and starts each connector at its last recorded offset. When the connector restarts, it sends a request to the PostgreSQL server to send the events starting just after that position.
The PostgreSQL connector retrieves schema information as part of the events sent by the logical decoding plug-in. However, the connector does not retrieve information about which columns compose the primary key. The connector obtains this information from the JDBC metadata (side channel). If the primary key definition of a table changes (by adding, removing or renaming primary key columns), there is a tiny period of time when the primary key information from JDBC is not synchronized with the change event that the logical decoding plug-in generates. During this tiny period, a message could be created with an inconsistent key structure. To prevent this inconsistency, update primary key structures as follows:
|
PostgreSQL 10+ logical decoding support (pgoutput
)
As of PostgreSQL 10+, there is a logical replication stream mode, called pgoutput
that is natively supported by PostgreSQL. This means that a Debezium PostgreSQL connector can consume that replication stream
without the need for additional plug-ins.
This is particularly valuable for environments where installation of plug-ins is not supported or not allowed.
For more information, see Setting up PostgreSQL.
Topic names
By default, the PostgreSQL connector writes change events for all INSERT
, UPDATE
, and DELETE
operations that occur in a table to a single Apache Kafka topic that is specific to that table.
The connector uses the following convention to name change event topics:
topicPrefix.schemaName.tableName
The following list provides definitions for the components of the default name:
- topicPrefix
-
The topic prefix as specified by the
topic.prefix
configuration property. - schemaName
-
The name of the database schema in which the change event occurred.
- tableName
-
The name of the database table in which the change event occurred.
For example, suppose that fulfillment
is the logical server name in the configuration for a connector that is capturing changes in a PostgreSQL installation that has a postgres
database and an inventory
schema that contains four tables: products
, products_on_hand
, customers
, and orders
. The connector would stream records to these four Kafka topics:
-
fulfillment.inventory.products
-
fulfillment.inventory.products_on_hand
-
fulfillment.inventory.customers
-
fulfillment.inventory.orders
Now suppose that the tables are not part of a specific schema but were created in the default public
PostgreSQL schema. The names of the Kafka topics would be:
-
fulfillment.public.products
-
fulfillment.public.products_on_hand
-
fulfillment.public.customers
-
fulfillment.public.orders
The connector applies similar naming conventions to label its transaction metadata topics.
If the default topic name do not meet your requirements, you can configure custom topic names. To configure custom topic names, you specify regular expressions in the logical topic routing SMT. For more information about using the logical topic routing SMT to customize topic naming, see Topic routing.
Transaction metadata
Debezium can generate events that represent transaction boundaries and that enrich data change event messages.
Limits on when Debezium receives transaction metadata
Debezium registers and receives metadata only for transactions that occur after you deploy the connector. Metadata for transactions that occur before you deploy the connector is not available. |
For every transaction BEGIN
and END
, Debezium generates an event that contains the following fields:
status
-
BEGIN
orEND
. id
-
String representation of the unique transaction identifier composed of Postgres transaction ID itself and LSN of given operation separated by colon, i.e. the format is
txID:LSN
. ts_ms
-
The time of a transaction boundary event (
BEGIN
orEND
event) at the data source. If the data source does not provide Debezium with the event time, then the field instead represents the time at which Debezium processes the event. event_count
(forEND
events)-
Total number of events emmitted by the transaction.
data_collections
(forEND
events)-
An array of pairs of
data_collection
andevent_count
elements that indicates the number of events that the connector emits for changes that originate from a data collection.
{
"status": "BEGIN",
"id": "571:53195829",
"ts_ms": 1486500577125,
"event_count": null,
"data_collections": null
}
{
"status": "END",
"id": "571:53195832",
"ts_ms": 1486500577691,
"event_count": 2,
"data_collections": [
{
"data_collection": "s1.a",
"event_count": 1
},
{
"data_collection": "s2.a",
"event_count": 1
}
]
}
Unless overridden via the topic.transaction
option,
transaction events are written to the topic named <topic.prefix>
.transaction
.
When transaction metadata is enabled the data message Envelope
is enriched with a new transaction
field.
This field provides information about every event in the form of a composite of fields:
id
-
String representation of unique transaction identifier.
total_order
-
The absolute position of the event among all events generated by the transaction.
data_collection_order
-
The per-data collection position of the event among all events that were emitted by the transaction.
Following is an example of a message:
{
"before": null,
"after": {
"pk": "2",
"aa": "1"
},
"source": {
...
},
"op": "c",
"ts_ms": "1580390884335",
"transaction": {
"id": "571:53195832",
"total_order": "1",
"data_collection_order": "1"
}
}
Data change events
The Debezium PostgreSQL connector generates a data change event for each row-level INSERT
, UPDATE
, and DELETE
operation. Each event contains a key and a value. The structure of the key and the value depends on the table that was changed.
Debezium and Kafka Connect are designed around continuous streams of event messages. However, the structure of these events may change over time, which can be difficult for consumers to handle. To address this, each event contains the schema for its content or, if you are using a schema registry, a schema ID that a consumer can use to obtain the schema from the registry. This makes each event self-contained.
The following skeleton JSON shows the basic four parts of a change event. However, how you configure the Kafka Connect converter that you choose to use in your application determines the representation of these four parts in change events. A schema
field is in a change event only when you configure the converter to produce it. Likewise, the event key and event payload are in a change event only if you configure a converter to produce it. If you use the JSON converter and you configure it to produce all four basic change event parts, change events have this structure:
{
"schema": { (1)
...
},
"payload": { (2)
...
},
"schema": { (3)
...
},
"payload": { (4)
...
},
}
Item | Field name | Description |
---|---|---|
1 |
|
The first |
2 |
|
The first |
3 |
|
The second |
4 |
|
The second |
By default behavior is that the connector streams change event records to topics with names that are the same as the event’s originating table.
Starting with Kafka 0.10, Kafka can optionally record the event key and value with the timestamp at which the message was created (recorded by the producer) or written to the log by Kafka. |
The PostgreSQL connector ensures that all Kafka Connect schema names adhere to the Avro schema name format. This means that the logical server name must start with a Latin letter or an underscore, that is, a-z, A-Z, or _. Each remaining character in the logical server name and each character in the schema and table names must be a Latin letter, a digit, or an underscore, that is, a-z, A-Z, 0-9, or \_. If there is an invalid character it is replaced with an underscore character. This can lead to unexpected conflicts if the logical server name, a schema name, or a table name contains invalid characters, and the only characters that distinguish names from one another are invalid and thus replaced with underscores. |
Change event keys
For a given table, the change event’s key has a structure that contains a field for each column in the primary key of the table at the time the event was created. Alternatively, if the table has REPLICA IDENTITY
set to FULL
or USING INDEX
there is a field for each unique key constraint.
Consider a customers
table defined in the public
database schema and the example of a change event key for that table.
CREATE TABLE customers (
id SERIAL,
first_name VARCHAR(255) NOT NULL,
last_name VARCHAR(255) NOT NULL,
email VARCHAR(255) NOT NULL,
PRIMARY KEY(id)
);
If the topic.prefix
connector configuration property has the value PostgreSQL_server
, every change event for the customers
table while it has this definition has the same key structure, which in JSON looks like this:
{
"schema": { (1)
"type": "struct",
"name": "PostgreSQL_server.public.customers.Key", (2)
"optional": false, (3)
"fields": [ (4)
{
"name": "id",
"index": "0",
"schema": {
"type": "INT32",
"optional": "false"
}
}
]
},
"payload": { (5)
"id": "1"
},
}
Item | Field name | Description |
---|---|---|
1 |
|
The schema portion of the key specifies a Kafka Connect schema that describes what is in the key’s |
2 |
|
Name of the schema that defines the structure of the key’s payload. This schema describes the structure of the primary key for the table that was changed. Key schema names have the format connector-name.database-name.table-name.
|
3 |
|
Indicates whether the event key must contain a value in its |
4 |
|
Specifies each field that is expected in the |
5 |
|
Contains the key for the row for which this change event was generated. In this example, the key, contains a single |
Although the |
If the table does not have a primary or unique key, then the change event’s key is null. The rows in a table without a primary or unique key constraint cannot be uniquely identified. |
Change event values
The value in a change event is a bit more complicated than the key. Like the key, the value has a schema
section and a payload
section. The schema
section contains the schema that describes the Envelope
structure of the payload
section, including its nested fields. Change events for operations that create, update or delete data all have a value payload with an envelope structure.
Consider the same sample table that was used to show an example of a change event key:
CREATE TABLE customers (
id SERIAL,
first_name VARCHAR(255) NOT NULL,
last_name VARCHAR(255) NOT NULL,
email VARCHAR(255) NOT NULL,
PRIMARY KEY(id)
);
The value portion of a change event for a change to this table varies according to the REPLICA IDENTITY
setting and the operation that the event is for.
Replica identity
REPLICA IDENTITY is a PostgreSQL-specific table-level setting that determines the amount of information that is available to the logical decoding plug-in for UPDATE
and DELETE
events. More specifically, the setting of REPLICA IDENTITY
controls what (if any) information is available for the previous values of the table columns involved, whenever an UPDATE
or DELETE
event occurs.
There are 4 possible values for REPLICA IDENTITY
:
-
DEFAULT
- The default behavior is thatUPDATE
andDELETE
events contain the previous values for the primary key columns of a table if that table has a primary key. For anUPDATE
event, only the primary key columns with changed values are present.If a table does not have a primary key, the connector does not emit
UPDATE
orDELETE
events for that table. For a table without a primary key, the connector emits only create events. Typically, a table without a primary key is used for appending messages to the end of the table, which means thatUPDATE
andDELETE
events are not useful. -
NOTHING
- Emitted events forUPDATE
andDELETE
operations do not contain any information about the previous value of any table column. -
FULL
- Emitted events forUPDATE
andDELETE
operations contain the previous values of all columns in the table. -
INDEX
index-name - Emitted events forUPDATE
andDELETE
operations contain the previous values of the columns contained in the specified index.UPDATE
events also contain the indexed columns with the updated values.
create events
The following example shows the value portion of a change event that the connector generates for an operation that creates data in the customers
table:
{
"schema": { (1)
"type": "struct",
"fields": [
{
"type": "struct",
"fields": [
{
"type": "int32",
"optional": false,
"field": "id"
},
{
"type": "string",
"optional": false,
"field": "first_name"
},
{
"type": "string",
"optional": false,
"field": "last_name"
},
{
"type": "string",
"optional": false,
"field": "email"
}
],
"optional": true,
"name": "PostgreSQL_server.inventory.customers.Value", (2)
"field": "before"
},
{
"type": "struct",
"fields": [
{
"type": "int32",
"optional": false,
"field": "id"
},
{
"type": "string",
"optional": false,
"field": "first_name"
},
{
"type": "string",
"optional": false,
"field": "last_name"
},
{
"type": "string",
"optional": false,
"field": "email"
}
],
"optional": true,
"name": "PostgreSQL_server.inventory.customers.Value",
"field": "after"
},
{
"type": "struct",
"fields": [
{
"type": "string",
"optional": false,
"field": "version"
},
{
"type": "string",
"optional": false,
"field": "connector"
},
{
"type": "string",
"optional": false,
"field": "name"
},
{
"type": "int64",
"optional": false,
"field": "ts_ms"
},
{
"type": "boolean",
"optional": true,
"default": false,
"field": "snapshot"
},
{
"type": "string",
"optional": false,
"field": "db"
},
{
"type": "string",
"optional": false,
"field": "schema"
},
{
"type": "string",
"optional": false,
"field": "table"
},
{
"type": "int64",
"optional": true,
"field": "txId"
},
{
"type": "int64",
"optional": true,
"field": "lsn"
},
{
"type": "int64",
"optional": true,
"field": "xmin"
}
],
"optional": false,
"name": "io.debezium.connector.postgresql.Source", (3)
"field": "source"
},
{
"type": "string",
"optional": false,
"field": "op"
},
{
"type": "int64",
"optional": true,
"field": "ts_ms"
}
],
"optional": false,
"name": "PostgreSQL_server.inventory.customers.Envelope" (4)
},
"payload": { (5)
"before": null, (6)
"after": { (7)
"id": 1,
"first_name": "Anne",
"last_name": "Kretchmar",
"email": "annek@noanswer.org"
},
"source": { (8)
"version": "2.1.4.Final",
"connector": "postgresql",
"name": "PostgreSQL_server",
"ts_ms": 1559033904863,
"snapshot": true,
"db": "postgres",
"sequence": "[\"24023119\",\"24023128\"]"
"schema": "public",
"table": "customers",
"txId": 555,
"lsn": 24023128,
"xmin": null
},
"op": "c", (9)
"ts_ms": 1559033904863 (10)
}
}
Item | Field name | Description | ||
---|---|---|---|---|
1 |
|
The value’s schema, which describes the structure of the value’s payload. A change event’s value schema is the same in every change event that the connector generates for a particular table. |
||
2 |
|
In the |
||
3 |
|
|
||
4 |
|
|
||
5 |
|
The value’s actual data. This is the information that the change event is providing. |
||
6 |
|
An optional field that specifies the state of the row before the event occurred. When the
|
||
7 |
|
An optional field that specifies the state of the row after the event occurred. In this example, the |
||
8 |
|
Mandatory field that describes the source metadata for the event. This field contains information that you can use to compare this event with other events, with regard to the origin of the events, the order in which the events occurred, and whether events were part of the same transaction. The source metadata includes:
|
||
9 |
|
Mandatory string that describes the type of operation that caused the connector to generate the event. In this example,
|
||
10 |
|
Optional field that displays the time at which the connector processed the event. The time is based on the system clock in the JVM running the Kafka Connect task. |
update events
The value of a change event for an update in the sample customers
table has the same schema as a create event for that table. Likewise, the event value’s payload has the same structure. However, the event value payload contains different values in an update event. Here is an example of a change event value in an event that the connector generates for an update in the customers
table:
{
"schema": { ... },
"payload": {
"before": { (1)
"id": 1
},
"after": { (2)
"id": 1,
"first_name": "Anne Marie",
"last_name": "Kretchmar",
"email": "annek@noanswer.org"
},
"source": { (3)
"version": "2.1.4.Final",
"connector": "postgresql",
"name": "PostgreSQL_server",
"ts_ms": 1559033904863,
"snapshot": false,
"db": "postgres",
"schema": "public",
"table": "customers",
"txId": 556,
"lsn": 24023128,
"xmin": null
},
"op": "u", (4)
"ts_ms": 1465584025523 (5)
}
}
Item | Field name | Description |
---|---|---|
1 |
|
An optional field that contains values that were in the row before the database commit. In this example, only the primary key column, |
2 |
|
An optional field that specifies the state of the row after the event occurred. In this example, the |
3 |
|
Mandatory field that describes the source metadata for the event. The
|
4 |
|
Mandatory string that describes the type of operation. In an update event value, the |
5 |
|
Optional field that displays the time at which the connector processed the event. The time is based on the system clock in the JVM running the Kafka Connect task. |
Updating the columns for a row’s primary/unique key changes the value of the row’s key. When a key changes, Debezium outputs three events: a |
Primary key updates
An UPDATE
operation that changes a row’s primary key field(s) is known
as a primary key change. For a primary key change, in place of sending an UPDATE
event record, the connector sends a DELETE
event record for the old key and a CREATE
event record for the new (updated) key. These events have the usual structure and content, and in addition, each one has a message header related to the primary key change:
-
The
DELETE
event record has__debezium.newkey
as a message header. The value of this header is the new primary key for the updated row. -
The
CREATE
event record has__debezium.oldkey
as a message header. The value of this header is the previous (old) primary key that the updated row had.
delete events
The value in a delete change event has the same schema
portion as create and update events for the same table. The payload
portion in a delete event for the sample customers
table looks like this:
{
"schema": { ... },
"payload": {
"before": { (1)
"id": 1
},
"after": null, (2)
"source": { (3)
"version": "2.1.4.Final",
"connector": "postgresql",
"name": "PostgreSQL_server",
"ts_ms": 1559033904863,
"snapshot": false,
"db": "postgres",
"schema": "public",
"table": "customers",
"txId": 556,
"lsn": 46523128,
"xmin": null
},
"op": "d", (4)
"ts_ms": 1465581902461 (5)
}
}
Item | Field name | Description |
---|---|---|
1 |
|
Optional field that specifies the state of the row before the event occurred. In a delete event value, the |
2 |
|
Optional field that specifies the state of the row after the event occurred. In a delete event value, the |
3 |
|
Mandatory field that describes the source metadata for the event. In a delete event value, the
|
4 |
|
Mandatory string that describes the type of operation. The |
5 |
|
Optional field that displays the time at which the connector processed the event. The time is based on the system clock in the JVM running the Kafka Connect task. |
A delete change event record provides a consumer with the information it needs to process the removal of this row.
For a consumer to be able to process a delete event generated for a table that does not have a primary key, set the table’s |
PostgreSQL connector events are designed to work with Kafka log compaction. Log compaction enables removal of some older messages as long as at least the most recent message for every key is kept. This lets Kafka reclaim storage space while ensuring that the topic contains a complete data set and can be used for reloading key-based state.
When a row is deleted, the delete event value still works with log compaction, because Kafka can remove all earlier messages that have that same key. However, for Kafka to remove all messages that have that same key, the message value must be null
. To make this possible, the PostgreSQL connector follows a delete event with a special tombstone event that has the same key but a null
value.
truncate events
A truncate change event signals that a table has been truncated.
The message key is null
in this case, the message value looks like this:
{
"schema": { ... },
"payload": {
"source": { (1)
"version": "2.1.4.Final",
"connector": "postgresql",
"name": "PostgreSQL_server",
"ts_ms": 1559033904863,
"snapshot": false,
"db": "postgres",
"schema": "public",
"table": "customers",
"txId": 556,
"lsn": 46523128,
"xmin": null
},
"op": "t", (2)
"ts_ms": 1559033904961 (3)
}
}
Item | Field name | Description |
---|---|---|
1 |
|
Mandatory field that describes the source metadata for the event. In a truncate event value, the
|
2 |
|
Mandatory string that describes the type of operation. The |
3 |
|
Optional field that displays the time at which the connector processed the event. The time is based on the system clock in the JVM running the Kafka Connect task. |
In case a single TRUNCATE
statement applies to multiple tables,
one truncate change event record for each truncated table will be emitted.
Note that since truncate events represent a change made to an entire table and don’t have a message key, unless you’re working with topics with a single partition, there are no ordering guarantees for the change events pertaining to a table (create, update, etc.) and truncate events for that table. For instance a consumer may receive an update event only after a truncate event for that table, when those events are read from different partitions.
message events
This event type is only supported through the |
A message event signals that a generic logical decoding message has been inserted directly into the WAL typically with the pg_logical_emit_message
function.
The message key is a Struct
with a single field named prefix
in this case, carrying the prefix specified when inserting the message.
The message value looks like this for transactional messages:
{
"schema": { ... },
"payload": {
"source": { (1)
"version": "2.1.4.Final",
"connector": "postgresql",
"name": "PostgreSQL_server",
"ts_ms": 1559033904863,
"snapshot": false,
"db": "postgres",
"schema": "",
"table": "",
"txId": 556,
"lsn": 46523128,
"xmin": null
},
"op": "m", (2)
"ts_ms": 1559033904961, (3)
"message": { (4)
"prefix": "foo",
"content": "Ymfy"
}
}
}
Unlike other event types, non-transactional messages will not have any associated BEGIN
or END
transaction events.
The message value looks like this for non-transactional messages:
{
"schema": { ... },
"payload": {
"source": { (1)
"version": "2.1.4.Final",
"connector": "postgresql",
"name": "PostgreSQL_server",
"ts_ms": 1559033904863,
"snapshot": false,
"db": "postgres",
"schema": "",
"table": "",
"lsn": 46523128,
"xmin": null
},
"op": "m", (2)
"ts_ms": 1559033904961 (3)
"message": { (4)
"prefix": "foo",
"content": "Ymfy"
}
}
Item | Field name | Description |
---|---|---|
1 |
|
Mandatory field that describes the source metadata for the event. In a message event value, the
|
2 |
|
Mandatory string that describes the type of operation. The |
3 |
|
Optional field that displays the time at which the connector processed the event. The time is based on the system clock in the JVM running the Kafka Connect task. For non-transactional message events, the |
4 |
|
Field that contains the message metadata
|
Data type mappings
The PostgreSQL connector represents changes to rows with events that are structured like the table in which the row exists. The event contains a field for each column value. How that value is represented in the event depends on the PostgreSQL data type of the column. The following sections describe how the connector maps PostgreSQL data types to a literal type and a semantic type in event fields.
-
literal type describes how the value is literally represented using Kafka Connect schema types:
INT8
,INT16
,INT32
,INT64
,FLOAT32
,FLOAT64
,BOOLEAN
,STRING
,BYTES
,ARRAY
,MAP
, andSTRUCT
. -
semantic type describes how the Kafka Connect schema captures the meaning of the field using the name of the Kafka Connect schema for the field.
If the default data type conversions do not meet your needs, you can create a custom converter for the connector.
Basic types
The following table describes how the connector maps basic types.
PostgreSQL data type | Literal type (schema type) | Semantic type (schema name) and Notes |
---|---|---|
|
|
n/a |
|
|
n/a |
|
|
|
|
|
|
|
|
n/a |
|
|
n/a |
|
|
n/a |
|
|
n/a |
|
|
n/a |
|
|
n/a |
|
|
n/a |
|
|
n/a |
|
|
n/a |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n/a |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n/a |
|
|
n/a |
|
|
n/a |
|
|
n/a |
|
|
n/a |
|
|
n/a |
|
|
n/a |
|
|
n/a |
|
|
|
Temporal types
Other than PostgreSQL’s TIMESTAMPTZ
and TIMETZ
data types, which contain time zone information, how temporal types are mapped depends on the value of the time.precision.mode
connector configuration property. The following sections describe these mappings:
time.precision.mode=adaptive
When the time.precision.mode
property is set to adaptive
, the default, the connector determines the literal type and semantic type based on the column’s data type definition. This ensures that events exactly represent the values in the database.
PostgreSQL data type | Literal type (schema type) | Semantic type (schema name) and Notes |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
time.precision.mode=adaptive_time_microseconds
When the time.precision.mode
configuration property is set to adaptive_time_microseconds
, the connector determines the literal type and semantic type for temporal types based on the column’s data type definition. This ensures that events exactly represent the values in the database, except all TIME
fields are captured as microseconds.
PostgreSQL data type | Literal type (schema type) | Semantic type (schema name) and Notes |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
time.precision.mode=connect
When the time.precision.mode
configuration property is set to connect
, the connector uses Kafka Connect logical types. This may be useful when consumers can handle only the built-in Kafka Connect logical types and are unable to handle variable-precision time values. However, since PostgreSQL supports microsecond precision, the events generated by a connector with the connect
time precision mode results in a loss of precision when the database column has a fractional second precision value that is greater than 3.
PostgreSQL data type | Literal type (schema type) | Semantic type (schema name) and Notes |
---|---|---|
|
|
|
|
|
|
|
|
|
TIMESTAMP type
The TIMESTAMP
type represents a timestamp without time zone information.
Such columns are converted into an equivalent Kafka Connect value based on UTC. For example, the TIMESTAMP
value "2018-06-20 15:13:16.945104" is represented by an io.debezium.time.MicroTimestamp
with the value "1529507596945104" when time.precision.mode
is not set to connect
.
The timezone of the JVM running Kafka Connect and Debezium does not affect this conversion.
PostgreSQL supports using +/-infinite
values in TIMESTAMP
columns.
These special values are converted to timestamps with value 9223372036825200000
in case of positive infinity or -9223372036832400000
in case of negative infinity.
This behavior mimics the standard behavior of the PostgreSQL JDBC driver.
For reference, see the org.postgresql.PGStatement
interface.
Decimal types
The setting of the PostgreSQL connector configuration property decimal.handling.mode
determines how the connector maps decimal types.
When the decimal.handling.mode
property is set to precise
, the connector uses the Kafka Connect org.apache.kafka.connect.data.Decimal
logical type for all DECIMAL
, NUMERIC
and MONEY
columns. This is the default mode.
PostgreSQL data type | Literal type (schema type) | Semantic type (schema name) and Notes |
---|---|---|
|
|
|
|
|
|
|
|
|
There is an exception to this rule.
When the NUMERIC
or DECIMAL
types are used without scale constraints, the values coming from the database have a different (variable) scale for each value. In this case, the connector uses io.debezium.data.VariableScaleDecimal
, which contains both the value and the scale of the transferred value.
PostgreSQL data type | Literal type (schema type) | Semantic type (schema name) and Notes |
---|---|---|
|
|
|
|
|
|
When the decimal.handling.mode
property is set to double
, the connector represents all DECIMAL
, NUMERIC
and MONEY
values as Java double values and encodes them as shown in the following table.
PostgreSQL data type | Literal type (schema type) | Semantic type (schema name) |
---|---|---|
|
|
|
|
|
|
|
|
The last possible setting for the decimal.handling.mode
configuration property is string
. In this case, the connector represents DECIMAL
, NUMERIC
and MONEY
values as their formatted string representation, and encodes them as shown in the following table.
PostgreSQL data type | Literal type (schema type) | Semantic type (schema name) |
---|---|---|
|
|
|
|
|
|
|
|
PostgreSQL supports NaN
(not a number) as a special value to be stored in DECIMAL
/NUMERIC
values when the setting of decimal.handling.mode
is string
or double
. In this case, the connector encodes NaN
as either Double.NaN
or the string constant NAN
.
HSTORE type
The setting of the PostgreSQL connector configuration property hstore.handling.mode
determines how the connector maps HSTORE
values.
When the dhstore.handling.mode
property is set to json
(the default), the connector represents HSTORE
values as string representations of JSON values and encodes them as shown in the following table. When the hstore.handling.mode
property is set to map
, the connector uses the MAP
schema type for HSTORE
values.
PostgreSQL data type | Literal type (schema type) | Semantic type (schema name) and Notes |
---|---|---|
|
|
|
|
|
n/a |
Domain types
PostgreSQL supports user-defined types that are based on other underlying types. When such column types are used, Debezium exposes the column’s representation based on the full type hierarchy.
Capturing changes in columns that use PostgreSQL domain types requires special consideration. When a column is defined to contain a domain type that extends one of the default database types and the domain type defines a custom length or scale, the generated schema inherits that defined length or scale. When a column is defined to contain a domain type that extends another domain type that defines a custom length or scale, the generated schema does not inherit the defined length or scale because that information is not available in the PostgreSQL driver’s column metadata. |
Network address types
PostgreSQL has data types that can store IPv4, IPv6, and MAC addresses. It is better to use these types instead of plain text types to store network addresses. Network address types offer input error checking and specialized operators and functions.
PostgreSQL data type | Literal type (schema type) | Semantic type (schema name) and Notes |
---|---|---|
|
|
n/a |
|
|
n/a |
|
|
n/a |
|
|
n/a |
PostGIS types
The PostgreSQL connector supports all PostGIS data types.
PostGIS data type | Literal type (schema type) | Semantic type (schema name) and Notes |
---|---|---|
|
|
For format details, see Open Geospatial Consortium Simple Features Access specification. |
|
|
For format details, see Open Geospatial Consortium Simple Features Access specification. |
Toasted values
PostgreSQL has a hard limit on the page size. This means that values that are larger than around 8 KBs need to be stored by using TOAST storage. This impacts replication messages that are coming from the database. Values that were stored by using the TOAST mechanism and that have not been changed are not included in the message, unless they are part of the table’s replica identity. There is no safe way for Debezium to read the missing value out-of-bands directly from the database, as this would potentially lead to race conditions. Consequently, Debezium follows these rules to handle toasted values:
-
Tables with
REPLICA IDENTITY FULL
- TOAST column values are part of thebefore
andafter
fields in change events just like any other column. -
Tables with
REPLICA IDENTITY DEFAULT
- When receiving anUPDATE
event from the database, any unchanged TOAST column value that is not part of the replica identity is not contained in the event. Similarly, when receiving aDELETE
event, no TOAST columns, if any, are in thebefore
field. As Debezium cannot safely provide the column value in this case, the connector returns a placeholder value as defined by the connector configuration property,unavailable.value.placeholder
.
Default values
If a default value is specified for a column in the database schema, the PostgreSQL connector will attempt to propagate this value to the Kafka schema whenever possible. Most common data types are supported, including:
-
BOOLEAN
-
Numeric types (
INT
,FLOAT
,NUMERIC
, etc.) -
Text types (
CHAR
,VARCHAR
,TEXT
, etc.) -
Temporal types (
DATE
,TIME
,INTERVAL
,TIMESTAMP
,TIMESTAMPTZ
) -
JSON
,JSONB
,XML
-
UUID
Note that for temporal types, parsing of the default value is provided by PostgreSQL libraries; therefore, any string representation which is normally supported by PostgreSQL should also be supported by the connector.
In the case that the default value is generated by a function rather than being directly specified in-line, the connector will instead export the equivalent of 0
for the given data type. These values include:
-
FALSE
forBOOLEAN
-
0
with appropriate precision, for numeric types -
Empty string for text/XML types
-
{}
for JSON types -
1970-01-01
forDATE
,TIMESTAMP
,TIMESTAMPTZ
types -
00:00
forTIME
-
EPOCH
forINTERVAL
-
00000000-0000-0000-0000-000000000000
forUUID
This support currently extends only to explicit usage of functions. For example, CURRENT_TIMESTAMP(6)
is supported with parentheses, but CURRENT_TIMESTAMP
is not.
Support for the propagation of default values exists primarily to allow for safe schema evolution when using the PostgreSQL connector with a schema registry which enforces compatibility between schema versions. Due to this primary concern, as well as the refresh behaviours of the different plug-ins, the default value present in the Kafka schema is not guaranteed to always be in-sync with the default value in the database schema.
This behaviour may be unexpected, but it is still safe. Only the schema definition is affected, while the real values present in the message will remain consistent with what was written to the source database. |
Setting up Postgres
Before using the PostgreSQL connector to monitor the changes committed on a PostgreSQL server, decide which logical decoding plug-in you intend to use.
If you plan not to use the native pgoutput
logical replication stream support, then you must install the logical decoding plug-in into the PostgreSQL server. Afterward, enable a replication slot, and configure a user with sufficient privileges to perform the replication.
If your database is hosted by a service such as Heroku Postgres you might be unable to install the plug-in. If so, and if you are using PostgreSQL 10+, you can use the pgoutput
decoder support to capture changes in your database. If that is not an option, you are unable to use Debezium with your database.
PostgreSQL in the Cloud
PostgreSQL on Amazon RDS
It is possible to capture changes in a PostgreSQL database that is running in Amazon RDS. To do this:
-
Set the instance parameter
rds.logical_replication
to1
. -
Verify that the
wal_level
parameter is set tological
by running the querySHOW wal_level
as the database RDS master user. This might not be the case in multi-zone replication setups. You cannot set this option manually. It is automatically changed when therds.logical_replication
parameter is set to1
. If thewal_level
is not set tological
after you make the preceding change, it is probably because the instance has to be restarted after the parameter group change. Restarts occur during your maintenance window, or you can initiate a restart manually. -
Set the Debezium
plugin.name
parameter topgoutput
. -
Initiate logical replication from an AWS account that has the
rds_replication
role. The role grants permissions to manage logical slots and to stream data using logical slots. By default, only the master user account on AWS has therds_replication
role on Amazon RDS. To enable a user account other than the master account to initiate logical replication, you must grant the account therds_replication
role. For example,grant rds_replication to <my_user>
. You must havesuperuser
access to grant therds_replication
role to a user. To enable accounts other than the master account to create an initial snapshot, you must grantSELECT
permission to the accounts on the tables to be captured. For more information about security for PostgreSQL logical replication, see the PostgreSQL documentation.
PostgreSQL on Azure
It is possible to use Debezium with Azure Database for PostgreSQL, which has support for the pgoutput
logical decoding plug-in, which is supported by Debezium.
Set the Azure replication support to logical
. You can use the Azure CLI or the Azure Portal to configure this. For example, to use the Azure CLI, here are the az postgres server
commands that you need to execute:
az postgres server configuration set --resource-group mygroup --server-name myserver --name azure.replication_support --value logical
az postgres server restart --resource-group mygroup --name myserver
PostgreSQL on CrunchyBridge
It is possible to use Debezium with CrunchyBridge; logical replication is already turned on. The pgoutput
plugin is available. You will have to create a replication user and provide correct privileges.
While using the |
Installing the logical decoding output plug-in
For more detailed instructions about setting up and testing logical decoding plug-ins, see Logical Decoding Output Plug-in Installation for PostgreSQL . |
As of PostgreSQL 9.4, the only way to read changes to the write-ahead-log is to install a logical decoding output plug-in. Plug-ins are written in C, compiled, and installed on the machine that runs the PostgreSQL server. Plug-ins use a number of PostgreSQL specific APIs, as described by the PostgreSQL documentation.
The PostgreSQL connector works with one of Debezium’s supported logical decoding plug-ins to receive change events from the database in either the Protobuf format or the pgoutput format.
The pgoutput
plugin comes out-of-the-box with the PostgreSQL database.
For more details on using Protobuf via the decoderbufs
plug-in, see the plug-in documentation
which discusses its requirements, limitations, and how to compile it.
For simplicity, Debezium also provides a container image based on the upstream PostgreSQL server image, on top of which it compiles and installs the plug-ins. You can use this image as an example of the detailed steps required for the installation.
The Debezium logical decoding plug-ins have been installed and tested on only Linux machines. For Windows and other operating systems, different installation steps might be required. |
Plug-in differences
Plug-in behavior is not completely the same for all cases. These differences have been identified:
-
While all plug-ins will refresh schema metadata from the database upon detection of a schema change during streaming, the
pgoutput
plug-in is somewhat more 'eager' about triggering such refreshes. For example, a change to the default value for a column will trigger a refresh withpgoutput
, while other plug-ins will not be aware of this change until another change triggers a refresh (eg. addition of a new column.) This is due to the behaviour ofpgoutput
, rather than Debezium itself.
All up-to-date differences are tracked in a test suite Java class.
Configuring the PostgreSQL server
If you are using a logical decoding plug-in other than pgoutput, after installing it, configure the PostgreSQL server as follows:
-
To load the plug-in at startup, add the following to the
postgresql.conf
file::# MODULES shared_preload_libraries = 'decoderbufs' (1)
1 Instructs the server to load the decoderbufs
logical decoding plug-ins at startup (the name of the plug-in is set in theProtobuf
make file). -
To configure the replication slot regardless of the decoder being used, specify the following in the
postgresql.conf
file:# REPLICATION wal_level = logical (1)
1 Instructs the server to use logical decoding with the write-ahead log.
Depending on your requirements, you may have to set other PostgreSQL streaming replication parameters when using Debezium.
Examples include max_wal_senders
and max_replication_slots
for increasing the number of connectors that can access the sending server concurrently, and wal_keep_size
for limiting the maximum WAL size which a replication slot will retain.
For more information about configuring streaming replication, see the PostgreSQL documentation.
Debezium uses PostgreSQL’s logical decoding, which uses replication slots. Replication slots are guaranteed to retain all WAL segments required for Debezium even during Debezium outages. For this reason, it is important to closely monitor replication slots to avoid too much disk consumption and other conditions that can happen such as catalog bloat if a replication slot stays unused for too long. For more information, see the PostgreSQL streaming replication documentation.
If you are working with a synchronous_commit
setting other than on
,
the recommendation is to set wal_writer_delay
to a value such as 10 milliseconds to achieve a low latency of change events.
Otherwise, its default value is applied, which adds a latency of about 200 milliseconds.
Reading and understanding PostgreSQL documentation about the mechanics and configuration of the PostgreSQL write-ahead log is strongly recommended. |
Setting up permissions
Setting up a PostgreSQL server to run a Debezium connector requires a database user that can perform replications. Replication can be performed only by a database user that has appropriate permissions and only for a configured number of hosts.
Although, by default, superusers have the necessary REPLICATION
and LOGIN
roles, as mentioned in Security, it is best not to provide the Debezium replication user with elevated privileges.
Instead, create a Debezium user that has the minimum required privileges.
-
PostgreSQL administrative permissions.
-
To provide a user with replication permissions, define a PostgreSQL role that has at least the
REPLICATION
andLOGIN
permissions, and then grant that role to the user. For example:CREATE ROLE <name> REPLICATION LOGIN;
Setting privileges to enable Debezium to create PostgreSQL publications when you use pgoutput
If you use pgoutput
as the logical decoding plugin, Debezium must operate in the database as a user with specific privileges.
Debezium streams change events for PostgreSQL source tables from publications that are created for the tables. Publications contain a filtered set of change events that are generated from one or more tables. The data in each publication is filtered based on the publication specification. The specification can be created by the PostgreSQL database administrator or by the Debezium connector. To permit the Debezium PostgreSQL connector to create publications and specify the data to replicate to them, the connector must operate with specific privileges in the database.
There are several options for determining how publications are created. In general, it is best to manually create publications for the tables that you want to capture, before you set up the connector. However, you can configure your environment in a way that permits Debezium to create publications automatically, and to specify the data that is added to them.
Debezium uses include list and exclude list properties to specify how data is inserted in the publication.
For more information about the options for enabling Debezium to create publications, see publication.autocreate.mode
.
For Debezium to create a PostgreSQL publication, it must run as a user that has the following privileges:
-
Replication privileges in the database to add the table to a publication.
-
CREATE
privileges on the database to add publications. -
SELECT
privileges on the tables to copy the initial table data. Table owners automatically haveSELECT
permission for the table.
To add tables to a publication, the user must be an owner of the table. But because the source table already exists, you need a mechanism to share ownership with the original owner. To enable shared ownership, you create a PostgreSQL replication group, and then add the existing table owner and the replication user to the group.
-
Create a replication group.
CREATE ROLE <replication_group>;
-
Add the original owner of the table to the group.
GRANT REPLICATION_GROUP TO <original_owner>;
-
Add the Debezium replication user to the group.
GRANT REPLICATION_GROUP TO <replication_user>;
-
Transfer ownership of the table to
<replication_group>
.ALTER TABLE <table_name> OWNER TO REPLICATION_GROUP;
For Debezium to specify the capture configuration, the value of publication.autocreate.mode
must be set to filtered
.
Configuring PostgreSQL to allow replication with the Debezium connector host
To enable Debezium to replicate PostgreSQL data, you must configure the database to permit replication with the host that runs the PostgreSQL connector.
To specify the clients that are permitted to replicate with the database, add entries to the PostgreSQL host-based authentication file, pg_hba.conf
.
For more information about the pg_hba.conf
file, see the PostgreSQL documentation.
-
Add entries to the
pg_hba.conf
file to specify the Debezium connector hosts that can replicate with the database host. For example,pg_hba.conf
file example:local replication <youruser> trust (1) host replication <youruser> 127.0.0.1/32 trust (2) host replication <youruser> ::1/128 trust (3)
1 Instructs the server to allow replication for <youruser>
locally, that is, on the server machine.2 Instructs the server to allow <youruser>
onlocalhost
to receive replication changes usingIPV4
.3 Instructs the server to allow <youruser>
onlocalhost
to receive replication changes usingIPV6
.
For more information about network masks, see the PostgreSQL documentation. |
Supported PostgreSQL topologies
The PostgreSQL connector can be used with a standalone PostgreSQL server or with a cluster of PostgreSQL servers.
As mentioned in the beginning, PostgreSQL (for all versions ⇐ 12) supports logical replication slots on only primary
servers. This means that a replica in a PostgreSQL cluster cannot be configured for logical replication, and consequently that the Debezium PostgreSQL connector can connect and communicate with only the primary server. Should this server fail, the connector stops. When the cluster is repaired, if the original primary server is once again promoted to primary
, you can restart the connector. However, if a different PostgreSQL server with the plug-in and proper configuration is promoted to primary
, you must change the connector configuration to point to the new primary
server and then you can restart the connector.
WAL disk space consumption
In certain cases, it is possible for PostgreSQL disk space consumed by WAL files to spike or increase out of usual proportions. There are several possible reasons for this situation:
-
The LSN up to which the connector has received data is available in the
confirmed_flush_lsn
column of the server’spg_replication_slots
view. Data that is older than this LSN is no longer available, and the database is responsible for reclaiming the disk space.Also in the
pg_replication_slots
view, therestart_lsn
column contains the LSN of the oldest WAL that the connector might require. If the value forconfirmed_flush_lsn
is regularly increasing and the value ofrestart_lsn
lags then the database needs to reclaim the space.The database typically reclaims disk space in batch blocks. This is expected behavior and no action by a user is necessary.
-
There are many updates in a database that is being tracked but only a tiny number of updates are related to the table(s) and schema(s) for which the connector is capturing changes. This situation can be easily solved with periodic heartbeat events. Set the
heartbeat.interval.ms
connector configuration property. -
The PostgreSQL instance contains multiple databases and one of them is a high-traffic database. Debezium captures changes in another database that is low-traffic in comparison to the other database. Debezium then cannot confirm the LSN as replication slots work per-database and Debezium is not invoked. As WAL is shared by all databases, the amount used tends to grow until an event is emitted by the database for which Debezium is capturing changes. To overcome this, it is necessary to:
-
Enable periodic heartbeat record generation with the
heartbeat.interval.ms
connector configuration property. -
Regularly emit change events from the database for which Debezium is capturing changes.
A separate process would then periodically update the table by either inserting a new row or repeatedly updating the same row. PostgreSQL then invokes Debezium, which confirms the latest LSN and allows the database to reclaim the WAL space. This task can be automated by means of the
heartbeat.action.query
connector configuration property. -
For users on AWS RDS with PostgreSQL, a situation similar to the high traffic/low traffic scenario can occur in an idle environment. AWS RDS causes writes to its own system tables to be invisible to clients on a frequent basis (5 minutes). Again, regularly emitting events solves the problem. |
Deployment
To deploy a Debezium PostgreSQL connector, you install the Debezium PostgreSQL connector archive, configure the connector, and start the connector by adding its configuration to Kafka Connect.
-
Zookeeper, Kafka, and Kafka Connect are installed.
-
PostgreSQL is installed and is set up to run the Debezium connector.
-
Download the Debezium PostgreSQL connector plug-in archive.
-
Extract the files into your Kafka Connect environment.
-
Add the directory with the JAR files to Kafka Connect’s
plugin.path
. -
Restart your Kafka Connect process to pick up the new JAR files.
If you are working with immutable containers, see Debezium’s Container images for Zookeeper, Kafka, PostgreSQL and Kafka Connect with the PostgreSQL connector already installed and ready to run. You can also run Debezium on Kubernetes and OpenShift.
Connector configuration example
Following is an example of the configuration for a PostgreSQL connector that connects to a PostgreSQL server on port 5432 at 192.168.99.100, whose logical name is fulfillment
.
Typically, you configure the Debezium PostgreSQL connector in a JSON file by setting the configuration properties available for the connector.
You can choose to produce events for a subset of the schemas and tables in a database. Optionally, you can ignore, mask, or truncate columns that contain sensitive data, are larger than a specified size, or that you do not need.
{
"name": "fulfillment-connector", (1)
"config": {
"connector.class": "io.debezium.connector.postgresql.PostgresConnector", (2)
"database.hostname": "192.168.99.100", (3)
"database.port": "5432", (4)
"database.user": "postgres", (5)
"database.password": "postgres", (6)
"database.dbname" : "postgres", (7)
"topic.prefix": "fulfillment", (8)
"table.include.list": "public.inventory" (9)
}
}
1 | The name of the connector when registered with a Kafka Connect service. |
2 | The name of this PostgreSQL connector class. |
3 | The address of the PostgreSQL server. |
4 | The port number of the PostgreSQL server. |
5 | The name of the PostgreSQL user that has the required privileges. |
6 | The password for the PostgreSQL user that has the required privileges. |
7 | The name of the PostgreSQL database to connect to |
8 | The topic prefix for the PostgreSQL server/cluster, which forms a namespace and is used in all the names of the Kafka topics to which the connector writes, the Kafka Connect schema names, and the namespaces of the corresponding Avro schema when the Avro converter is used. |
9 | A list of all tables hosted by this server that this connector will monitor. This is optional, and there are other properties for listing the schemas and tables to include or exclude from monitoring. |
See the complete list of PostgreSQL connector properties that can be specified in these configurations.
You can send this configuration with a POST
command to a running Kafka Connect service.
The service records the configuration and starts one connector task that performs the following actions:
-
Connects to the PostgreSQL database.
-
Reads the transaction log.
-
Streams change event records to Kafka topics.
Adding connector configuration
To run a Debezium PostgreSQL connector, create a connector configuration and add the configuration to your Kafka Connect cluster.
-
The logical decoding plug-in is installed.
-
The PostgreSQL connector is installed.
-
Create a configuration for the PostgreSQL connector.
-
Use the Kafka Connect REST API to add that connector configuration to your Kafka Connect cluster.
After the connector starts, it performs a consistent snapshot of the PostgreSQL server databases that the connector is configured for. The connector then starts generating data change events for row-level operations and streaming change event records to Kafka topics.
Connector properties
The Debezium PostgreSQL connector has many configuration properties that you can use to achieve the right connector behavior for your application. Many properties have default values. Information about the properties is organized as follows:
The following configuration properties are required unless a default value is available.
Property | Default | Description | ||
---|---|---|---|---|
No default |
Unique name for the connector. Attempting to register again with the same name will fail. This property is required by all Kafka Connect connectors. |
|||
No default |
The name of the Java class for the connector. Always use a value of |
|||
|
The maximum number of tasks that should be created for this connector. The PostgreSQL connector always uses a single task and therefore does not use this value, so the default is always acceptable. |
|||
|
The name of the PostgreSQL logical decoding plug-in installed on the PostgreSQL server. Supported values are |
|||
|
The name of the PostgreSQL logical decoding slot that was created for streaming changes from a particular plug-in for a particular database/schema. The server uses this slot to stream events to the Debezium connector that you are configuring. Slot names must conform to PostgreSQL replication slot naming rules, which state: "Each replication slot has a name, which can contain lower-case letters, numbers, and the underscore character." |
|||
|
Whether or not to delete the logical replication slot when the connector stops in a graceful, expected way. The default behavior is that the replication slot remains configured for the connector when the connector stops. When the connector restarts, having the same replication slot enables the connector to start processing where it left off. Set to |
|||
|
The name of the PostgreSQL publication created for streaming changes when using This publication is created at start-up if it does not already exist and it includes all tables. Debezium then applies its own include/exclude list filtering, if configured, to limit the publication to change events for the specific tables of interest. The connector user must have superuser permissions to create this publication, so it is usually preferable to create the publication before starting the connector for the first time. If the publication already exists, either for all tables or configured with a subset of tables, Debezium uses the publication as it is defined. |
|||
No default |
IP address or hostname of the PostgreSQL database server. |
|||
|
Integer port number of the PostgreSQL database server. |
|||
No default |
Name of the PostgreSQL database user for connecting to the PostgreSQL database server. |
|||
No default |
Password to use when connecting to the PostgreSQL database server. |
|||
No default |
The name of the PostgreSQL database from which to stream the changes. |
|||
No default |
Topic prefix that provides a namespace for the particular PostgreSQL database server or cluster in which Debezium is capturing changes.
The prefix should be unique across all other connectors, since it is used as a topic name prefix for all Kafka topics that receive records from this connector.
Only alphanumeric characters, hyphens, dots and underscores must be used in the database server logical name.
|
|||
No default |
An optional, comma-separated list of regular expressions that match names of schemas for which you want to capture changes.
Any schema name not included in To match the name of a schema, Debezium applies the regular expression that you specify as an anchored regular expression.
That is, the specified expression is matched against the entire identifier for the schema; it does not match substrings that might be present in a schema name. |
|||
No default |
An optional, comma-separated list of regular expressions that match names of schemas for which you do not want to capture changes.
Any schema whose name is not included in To match the name of a schema, Debezium applies the regular expression that you specify as an anchored regular expression.
That is, the specified expression is matched against the entire identifier for the schema; it does not match substrings that might be present in a schema name. |
|||
No default |
An optional, comma-separated list of regular expressions that match fully-qualified table identifiers for tables whose changes you want to capture.
When this property is set, the connector captures changes only from the specified tables.
Each identifier is of the form schemaName.tableName.
By default, the connector captures changes in every non-system table in each schema whose changes are being captured. To match the name of a table, Debezium applies the regular expression that you specify as an anchored regular expression.
That is, the specified expression is matched against the entire identifier for the table; it does not match substrings that might be present in a table name. |
|||
No default |
An optional, comma-separated list of regular expressions that match fully-qualified table identifiers for tables whose changes you do not want to capture.
Each identifier is of the form schemaName.tableName.
When this property is set, the connector captures changes from every table that you do not specify. To match the name of a table, Debezium applies the regular expression that you specify as an anchored regular expression.
That is, the specified expression is matched against the entire identifier for the table; it does not match substrings that might be present in a table name. |
|||
No default |
An optional, comma-separated list of regular expressions that match the fully-qualified names of columns that should be included in change event record values.
Fully-qualified names for columns are of the form schemaName.tableName.columnName. To match the name of a column, Debezium applies the regular expression that you specify as an anchored regular expression.
That is, the expression is used to match the entire name string of the column; it does not match substrings that might be present in a column name. |
|||
No default |
An optional, comma-separated list of regular expressions that match the fully-qualified names of columns that should be excluded from change event record values.
Fully-qualified names for columns are of the form schemaName.tableName.columnName. To match the name of a column, Debezium applies the regular expression that you specify as an anchored regular expression.
That is, the expression is used to match the entire name string of the column; it does not match substrings that might be present in a column name. |
|||
|
Time, date, and timestamps can be represented with different kinds of precision: |
|||
|
Specifies how the connector should handle values for |
|||
|
Specifies how the connector should handle values for |
|||
|
Specifies how the connector should handle values for |
|||
|
Whether to use an encrypted connection to the PostgreSQL server. Options include: |
|||
No default |
The path to the file that contains the SSL certificate for the client. For more information, see the PostgreSQL documentation. |
|||
No default |
The path to the file that contains the SSL private key of the client. For more information, see the PostgreSQL documentation. |
|||
No default |
The password to access the client private key from the file specified by |
|||
No default |
The path to the file that contains the root certificate(s) against which the server is validated. For more information, see the PostgreSQL documentation. |
|||
|
Enable TCP keep-alive probe to verify that the database connection is still alive. For more information, see the PostgreSQL documentation. |
|||
|
Controls whether a delete event is followed by a tombstone event. |
|||
n/a |
An optional, comma-separated list of regular expressions that match the fully-qualified names of character-based columns.
Set this property if you want to truncate the data in a set of columns when it exceeds the number of characters specified by the length in the property name.
Set The fully-qualified name of a column observes the following format: You can specify multiple properties with different lengths in a single configuration. |
|||
n/a |
An optional, comma-separated list of regular expressions that match the fully-qualified names of character-based columns.
Set this property if you want the connector to mask the values for a set of columns, for example, if they contain sensitive data.
Set The fully-qualified name of a column observes the following format: schemaName.tableName.columnName. To match the name of a column, Debezium applies the regular expression that you specify as an anchored regular expression. That is, the specified expression is matched against the entire name string of the column; the expression does not match substrings that might be present in a column name. You can specify multiple properties with different lengths in a single configuration. |
|||
n/a |
An optional, comma-separated list of regular expressions that match the fully-qualified names of character-based columns.
Fully-qualified names for columns are of the form <schemaName>.<tableName>.<columnName>. A pseudonym consists of the hashed value that results from applying the specified hashAlgorithm and salt.
Based on the hash function that is used, referential integrity is maintained, while column values are replaced with pseudonyms.
Supported hash functions are described in the MessageDigest section of the Java Cryptography Architecture Standard Algorithm Name Documentation. column.mask.hash.SHA-256.with.salt.CzQMA0cB5K = inventory.orders.customerName, inventory.shipment.customerName If necessary, the pseudonym is automatically shortened to the length of the column.
The connector configuration can include multiple properties that specify different hash algorithms and salts. |
|||
n/a |
An optional, comma-separated list of regular expressions that match the fully-qualified names of columns for which you want the connector to emit extra parameters that represent column metadata. When this property is set, the connector adds the following fields to the schema of event records:
These parameters propagate a column’s original type name and length (for variable-width types), respectively. The fully-qualified name of a column observes one of the following formats: databaseName.tableName.columnName, or databaseName.schemaName.tableName.columnName. |
|||
n/a |
An optional, comma-separated list of regular expressions that specify the fully-qualified names of data types that are defined for columns in a database. When this property is set, for columns with matching data types, the connector emits event records that include the following extra fields in their schema:
These parameters propagate a column’s original type name and length (for variable-width types), respectively. The fully-qualified name of a column observes one of the following formats: databaseName.tableName.typeName, or databaseName.schemaName.tableName.typeName. For the list of PostgreSQL-specific data type names, see the PostgreSQL data type mappings. |
|||
empty string |
A list of expressions that specify the columns that the connector uses to form custom message keys for change event records that it publishes to the Kafka topics for specified tables. By default, Debezium uses the primary key column of a table as the message key for records that it emits.
In place of the default, or to specify a key for tables that lack a primary key, you can configure custom message keys based on one or more columns. Each fully-qualified table name is a regular expression in the following format: There is no limit to the number of columns that you use to create custom message keys. However, it’s best to use the minimum number that are required to specify a unique key. |
|||
all_tables |
Applies only when streaming changes by using the |
|||
bytes |
Specifies how binary ( |
|||
none |
Specifies how schema names should be adjusted for compatibility with the message converter used by the connector. Possible settings:
|
|||
|
Specifies how many decimal digits should be used when converting Postgres |
|||
No default |
An optional, comma-separated list of regular expressions that match the names of the logical decoding message prefixes that you want the connector to capture. By default, the connector captures all logical decoding messages. When this property is set, the connector captures only logical decoding message with the prefixes specified by the property. All other logical decoding messages are excluded. To match the name of a message prefix, Debezium applies the regular expression that you specify as an anchored regular expression. That is, the specified expression is matched against the entire message prefix string; the expression does not match substrings that might be present in a prefix. If you include this property in the configuration, do not also set the For information about the structure of message events and about their ordering semantics, see message events. |
|||
No default |
An optional, comma-separated list of regular expressions that match the names of the logical decoding message prefixes that you do not want the connector to capture.
When this property is set, the connector does not capture logical decoding messages that use the specified prefixes.
All other messages are captured. To match the name of a message prefix, Debezium applies the regular expression that you specify as an anchored regular expression. That is, the specified expression is matched against the entire message prefix string; the expression does not match substrings that might be present in a prefix. If you include this property in the configuration, do not also set For information about the structure of message events and about their ordering semantics, see message events. |
The following advanced configuration properties have defaults that work in most situations and therefore rarely need to be specified in the connector’s configuration.
Property | Default | Description | ||
---|---|---|---|---|
No default |
Enumerates a comma-separated list of the symbolic names of the custom converter instances that the connector can use.
For example,
You must set the For each converter that you configure for a connector, you must also add a
For example, isbn.type: io.debezium.test.IsbnConverter If you want to further control the behavior of a configured converter, you can add one or more configuration parameters to pass values to the converter.
To associate any additional configuration parameter with a converter, prefix the parameter names with the symbolic name of the converter. isbn.schema.name: io.debezium.postgresql.type.Isbn |
|||
|
Specifies the criteria for performing a snapshot when the connector starts: |
|||
No default |
A full Java class name that is an implementation of the |
|||
All tables specified in |
An optional, comma-separated list of regular expressions that match the fully-qualified names ( To match the name of a table, Debezium applies the regular expression that you specify as an anchored regular expression. That is, the specified expression is matched against the entire name string of the table; it does not match substrings that might be present in a table name. |
|||
|
Positive integer value that specifies the maximum amount of time (in milliseconds) to wait to obtain table locks when performing a snapshot. If the connector cannot acquire table locks in this time interval, the snapshot fails. How the connector performs snapshots provides details. |
|||
No default |
Specifies the table rows to include in a snapshot. Use the property if you want a snapshot to include only a subset of the rows in a table. This property affects snapshots only. It does not apply to events that the connector reads from the log. The property contains a comma-separated list of fully-qualified table names in the form From a "snapshot.select.statement.overrides": "customer.orders", "snapshot.select.statement.overrides.customer.orders": "SELECT * FROM [customers].[orders] WHERE delete_flag = 0 ORDER BY id DESC" In the resulting snapshot, the connector includes only the records for which |
|||
|
Specifies how the connector should react to exceptions during processing of events: |
|||
|
Positive integer value that specifies the maximum size of each batch of events that the connector processes. |
|||
|
Positive integer value that specifies the maximum number of records that the blocking queue can hold.
When Debezium reads events streamed from the database, it places the events in the blocking queue before it writes them to Kafka.
The blocking queue can provide backpressure for reading change events from the database
in cases where the connector ingests messages faster than it can write them to Kafka, or when Kafka becomes unavailable.
Events that are held in the queue are disregarded when the connector periodically records offsets.
Always set the value of |
|||
|
A long integer value that specifies the maximum volume of the blocking queue in bytes.
By default, volume limits are not specified for the blocking queue.
To specify the number of bytes that the queue can consume, set this property to a positive long value. |
|||
|
Positive integer value that specifies the number of milliseconds the connector should wait for new change events to appear before it starts processing a batch of events. Defaults to 500 milliseconds. |
|||
|
Specifies connector behavior when the connector encounters a field whose data type is unknown. The default behavior is that the connector omits the field from the change event and logs a warning.
|
|||
No default |
A semicolon separated list of SQL statements that the connector executes when it establishes a JDBC connection to the database. To use a semicolon as a character and not as a delimiter, specify two consecutive semicolons, |
|||
|
Frequency for sending replication connection status updates to the server, given in milliseconds.
|
|||
|
Controls how frequently the connector sends heartbeat messages to a Kafka topic. The default behavior is that the connector does not send heartbeat messages. |
|||
No default |
Specifies a query that the connector executes on the source database when the connector sends a heartbeat message. |
|||
|
Specify the conditions that trigger a refresh of the in-memory schema for a table. |
|||
No default |
An interval in milliseconds that the connector should wait before performing a snapshot when the connector starts. If you are starting multiple connectors in a cluster, this property is useful for avoiding snapshot interruptions, which might cause re-balancing of connectors. |
|||
|
During a snapshot, the connector reads table content in batches of rows. This property specifies the maximum number of rows in a batch. |
|||
No default |
Semicolon separated list of parameters to pass to the configured logical decoding plug-in. For example, |
|||
|
Indicates whether field names are sanitized to adhere to Avro naming requirements. |
|||
|
If connecting to a replication slot fails, this is the maximum number of consecutive attempts to connect. |
|||
|
The number of milliseconds to wait between retry attempts when the connector fails to connect to a replication slot. |
|||
|
Specifies the constant that the connector provides to indicate that the original value is a toasted value that is not provided by the database.
If the setting of |
|||
|
Determines whether the connector generates events with transaction boundaries and enriches change event envelopes with transaction metadata. Specify |
|||
|
Determines whether the connector should commit the LSN of the processed records in the source postgres database so that the WAL logs can be deleted. Specify |
|||
10000 (10 seconds) |
The number of milliseconds to wait before restarting a connector after a retriable error occurs. |
|||
|
A comma-separated list of operation types that will be skipped during streaming.
The operations include: |
|||
No default value |
Fully-qualified name of the data collection that is used to send signals to the connector. |
|||
1024 |
The maximum number of rows that the connector fetches and reads into memory during an incremental snapshot chunk. Increasing the chunk size provides greater efficiency, because the snapshot runs fewer snapshot queries of a greater size. However, larger chunk sizes also require more memory to buffer the snapshot data. Adjust the chunk size to a value that provides the best performance in your environment. |
|||
|
How often, in milliseconds, the XMIN will be read from the replication slot.
The XMIN value provides the lower bounds of where a new replication slot could start from.
The default value of |
|||
|
The name of the TopicNamingStrategy class that should be used to determine the topic name for data change, schema change, transaction, heartbeat event etc., defaults to |
|||
|
Specify the delimiter for topic name, defaults to |
|||
|
The size used for holding the topic names in bounded concurrent hash map. This cache will help to determine the topic name corresponding to a given data collection. |
|||
|
Controls the name of the topic to which the connector sends heartbeat messages. The topic name has this pattern: |
|||
|
Controls the name of the topic to which the connector sends transaction metadata messages. The topic name has this pattern: |
The connector also supports pass-through configuration properties that are used when creating the Kafka producer and consumer.
Be sure to consult the Kafka documentation for all of the configuration properties for Kafka producers and consumers. The PostgreSQL connector does use the new consumer configuration properties.
Monitoring
The Debezium PostgreSQL connector provides two types of metrics that are in addition to the built-in support for JMX metrics that Zookeeper, Kafka, and Kafka Connect provide.
-
Snapshot metrics provide information about connector operation while performing a snapshot.
-
Streaming metrics provide information about connector operation when the connector is capturing changes and streaming change event records.
Debezium monitoring documentation provides details for how to expose these metrics by using JMX.
Snapshot metrics
The MBean is debezium.postgres:type=connector-metrics,context=snapshot,server=<postgresql.server.name>
.
Snapshot metrics are not exposed unless a snapshot operation is active, or if a snapshot has occurred since the last connector start.
The following table lists the shapshot metrics that are available.
Attributes | Type | Description |
---|---|---|
|
The last snapshot event that the connector has read. |
|
|
The number of milliseconds since the connector has read and processed the most recent event. |
|
|
The total number of events that this connector has seen since last started or reset. |
|
|
The number of events that have been filtered by include/exclude list filtering rules configured on the connector. |
|
|
The list of tables that are captured by the connector. |
|
|
The length the queue used to pass events between the snapshotter and the main Kafka Connect loop. |
|
|
The free capacity of the queue used to pass events between the snapshotter and the main Kafka Connect loop. |
|
|
The total number of tables that are being included in the snapshot. |
|
|
The number of tables that the snapshot has yet to copy. |
|
|
Whether the snapshot was started. |
|
|
Whether the snapshot was paused. |
|
|
Whether the snapshot was aborted. |
|
|
Whether the snapshot completed. |
|
|
The total number of seconds that the snapshot has taken so far, even if not complete. Includes also time when snapshot was paused. |
|
|
The total number of seconds that the snapshot was paused. If the snapshot was paused several times, the paused time adds up. |
|
|
Map containing the number of rows scanned for each table in the snapshot. Tables are incrementally added to the Map during processing. Updates every 10,000 rows scanned and upon completing a table. |
|
|
The maximum buffer of the queue in bytes. This metric is available if |
|
|
The current volume, in bytes, of records in the queue. |
The connector also provides the following additional snapshot metrics when an incremental snapshot is executed:
Attributes | Type | Description |
---|---|---|
|
The identifier of the current snapshot chunk. |
|
|
The lower bound of the primary key set defining the current chunk. |
|
|
The upper bound of the primary key set defining the current chunk. |
|
|
The lower bound of the primary key set of the currently snapshotted table. |
|
|
The upper bound of the primary key set of the currently snapshotted table. |
Streaming metrics
The MBean is debezium.postgres:type=connector-metrics,context=streaming,server=<postgresql.server.name>
.
The following table lists the streaming metrics that are available.
Attributes | Type | Description |
---|---|---|
|
The last streaming event that the connector has read. |
|
|
The number of milliseconds since the connector has read and processed the most recent event. |
|
|
The total number of events that this connector has seen since the last start or metrics reset. |
|
|
The total number of create events that this connector has seen since the last start or metrics reset. |
|
|
The total number of update events that this connector has seen since the last start or metrics reset. |
|
|
The total number of delete events that this connector has seen since the last start or metrics reset. |
|
|
The number of events that have been filtered by include/exclude list filtering rules configured on the connector. |
|
|
The list of tables that are captured by the connector. |
|
|
The length the queue used to pass events between the streamer and the main Kafka Connect loop. |
|
|
The free capacity of the queue used to pass events between the streamer and the main Kafka Connect loop. |
|
|
Flag that denotes whether the connector is currently connected to the database server. |
|
|
The number of milliseconds between the last change event’s timestamp and the connector processing it. The values will incoporate any differences between the clocks on the machines where the database server and the connector are running. |
|
|
The number of processed transactions that were committed. |
|
|
The coordinates of the last received event. |
|
|
Transaction identifier of the last processed transaction. |
|
|
The maximum buffer of the queue in bytes. This metric is available if |
|
|
The current volume, in bytes, of records in the queue. |
Behavior when things go wrong
Debezium is a distributed system that captures all changes in multiple upstream databases; it never misses or loses an event. When the system is operating normally or being managed carefully then Debezium provides exactly once delivery of every change event record.
If a fault does happen then the system does not lose any events. However, while it is recovering from the fault, it might repeat some change events. In these abnormal situations, Debezium, like Kafka, provides at least once delivery of change events.
The rest of this section describes how Debezium handles various kinds of faults and problems.
Configuration and startup errors
In the following situations, the connector fails when trying to start, reports an error/exception in the log, and stops running:
-
The connector’s configuration is invalid.
-
The connector cannot successfully connect to PostgreSQL by using the specified connection parameters.
-
The connector is restarting from a previously-recorded position in the PostgreSQL WAL (by using the LSN) and PostgreSQL no longer has that history available.
In these cases, the error message has details about the problem and possibly a suggested workaround. After you correct the configuration or address the PostgreSQL problem, restart the connector.
PostgreSQL becomes unavailable
When the connector is running, the PostgreSQL server that it is connected to could become unavailable for any number of reasons. If this happens, the connector fails with an error and stops. When the server is available again, restart the connector.
The PostgreSQL connector externally stores the last processed offset in the form of a PostgreSQL LSN. After a connector restarts and connects to a server instance, the connector communicates with the server to continue streaming from that particular offset. This offset is available as long as the Debezium replication slot remains intact. Never drop a replication slot on the primary server or you will lose data. For information about failure cases in which a slot has been removed, see the next section.
Cluster failures
As of release 12, PostgreSQL allows logical replication slots only on primary servers. This means that you can point a Debezium PostgreSQL connector to only the active primary server of a database cluster. Also, replication slots themselves are not propagated to replicas. If the primary server goes down, a new primary must be promoted.
Some managed PostgresSQL services (AWS RDS and GCP CloudSQL for example) implement replication to a standby via disk replication. This means that the replication slot does get replicated and will remain available after a failover. |
The new primary must have the logical decoding plug-in installed and a replication slot that is configured for use by the plug-in and the database for which you want to capture changes. Only then can you point the connector to the new server and restart the connector.
There are important caveats when failovers occur and you should pause Debezium until you can verify that you have an intact replication slot that has not lost data. After a failover:
-
There must be a process that re-creates the Debezium replication slot before allowing the application to write to the new primary. This is crucial. Without this process, your application can miss change events.
-
You might need to verify that Debezium was able to read all changes in the slot before the old primary failed.
One reliable method of recovering and verifying whether any changes were lost is to recover a backup of the failed primary to the point immediately before it failed. While this can be administratively difficult, it allows you to inspect the replication slot for any unconsumed changes.
There are discussions in the PostgreSQL community around a feature called More about the concept of failover slots is in this blog post. |
Kafka Connect process stops gracefully
Suppose that Kafka Connect is being run in distributed mode and a Kafka Connect process is stopped gracefully. Prior to shutting down that process, Kafka Connect migrates the process’s connector tasks to another Kafka Connect process in that group. The new connector tasks start processing exactly where the prior tasks stopped. There is a short delay in processing while the connector tasks are stopped gracefully and restarted on the new processes.
Kafka Connect process crashes
If the Kafka Connector process stops unexpectedly, any connector tasks it was running terminate without recording their most recently processed offsets. When Kafka Connect is being run in distributed mode, Kafka Connect restarts those connector tasks on other processes. However, PostgreSQL connectors resume from the last offset that was recorded by the earlier processes. This means that the new replacement tasks might generate some of the same change events that were processed just prior to the crash. The number of duplicate events depends on the offset flush period and the volume of data changes just before the crash.
Because there is a chance that some events might be duplicated during a recovery from failure, consumers should always anticipate some duplicate events. Debezium changes are idempotent, so a sequence of events always results in the same state.
In each change event record, Debezium connectors insert source-specific information about the origin of the event, including the PostgreSQL server’s time of the event, the ID of the server transaction, and the position in the write-ahead log where the transaction changes were written. Consumers can keep track of this information, especially the LSN, to determine whether an event is a duplicate.
Kafka becomes unavailable
As the connector generates change events, the Kafka Connect framework records those events in Kafka by using the Kafka producer API. Periodically, at a frequency that you specify in the Kafka Connect configuration, Kafka Connect records the latest offset that appears in those change events. If the Kafka brokers become unavailable, the Kafka Connect process that is running the connectors repeatedly tries to reconnect to the Kafka brokers. In other words, the connector tasks pause until a connection can be re-established, at which point the connectors resume exactly where they left off.
Connector is stopped for a duration
If the connector is gracefully stopped, the database can continue to be used. Any changes are recorded in the PostgreSQL WAL. When the connector restarts, it resumes streaming changes where it left off. That is, it generates change event records for all database changes that were made while the connector was stopped.
A properly configured Kafka cluster is able to handle massive throughput. Kafka Connect is written according to Kafka best practices, and given enough resources a Kafka Connect connector can also handle very large numbers of database change events. Because of this, after being stopped for a while, when a Debezium connector restarts, it is very likely to catch up with the database changes that were made while it was stopped. How quickly this happens depends on the capabilities and performance of Kafka and the volume of changes being made to the data in PostgreSQL.