Debezium Blog

Hello everyone, Jakub here. You may have noticed that there wasn’t much happening around Debezium UI lately. This, however, would be only partially true. We own you an explanation in this regard, so please bear with me. Let’s start with the status of the current UI project. It became increasing clear that while UI for Debezium is an important part of our vision, developing a UI strictly tied to Kafka Connect is not the right...

With Debezium 2.3, we introduced a preview of a brand new Debezium Operator with the aim to provide seamless deployment of Debezium Server to Kubernetes (k8s) clusters. The Debezium 2.4.0.Final release brings the next step towards the full support of this component. With this release, we are happy to announce that Debezium Operator is now available in the OperatorHub catalog for Kubernetes as well as in the community operator catalog embedded in the OpenShift and OKD distributions. The operator remains in the incubation phase; however, the full support of this component is approaching fast.

Update (Oct. 11 2019): An alternative, and much simpler, approach for running Debezium (and Apache Kafka and Kafka Connect in general) on Kubernetes is to use a K8s operator such as Strimzi. You can find instructions for the set-up of Debezium on OpenShift here, and similar steps apply for plain Kubernetes.

Our Debezium Tutorial walks you step by step through using Debezium by installing, starting, and linking together all of the Docker containers running on a single host machine. Of course, you can use things like Docker Compose or your own scripts to make this easier, although that would just automating running all the containers on a single machine. What you really want is to run the containers on a cluster of machines. In this blog, we’ll run Debezium using a container cluster manager from Red Hat and Google called Kubernetes.

Kubernetes is a container (Docker/Rocket/Hyper.sh) cluster management tool. Like many other popular cluster management and compute resource scheduling platforms, Kubernetes' roots are in Google, who is no stranger to running containers at scale. They start, stop, and cluster 2 billion containers per week and they contributed a lot of the Linux kernel underpinnings that make containers possible. One of their famous papers talks about an internal cluster manager named Borg. With Kubernetes, Google got tired of everyone implementing their papers in Java so they decided to implement this one themselves :)

Kubernetes is written in Go-lang and is quickly becoming the de-facto API for scheduling, managing, and clustering containers at scale. This blog isn’t intended to be a primer on Kubernetes, so we recommend heading over to the Getting Started docs to learn more about Kubernetes.